

SMEX Fleet Operations System

Presented By:

Maureen Madden, SMEX Mission Director
Fleet Integration Team includes:
NASA – GMSEC, NASA – SSMO
Emergent Space Technologies, Inc.
Honeywell Technology Solutions, Inc.

L-3 Storm Control Systems

March 24, 2004

Purpose

- Demonstrate Fleet and Constellation Operations For Future Missions
- Facilitate Rapid Insertion of New Mission Services Technologies
 - GMSEC information bus for plug-and-play modularity/interoperability
 - Ongoing SMEX missions serve as a proving ground or live test bed
- Demonstrate Potential for Mission Operations Cost Reductions
 - Reduced hardware and software maintenance costs
 - Consolidate legacy systems and reduce the number of external interfaces
 - Reduce costs of adding additional SMEX missions
 - Minimize hardware obsolescence
 - Reduced Operations Costs
 - Automation of, and university support for, routine operations

GMSEC System Concept

- Standardized Interfaces (not components)
 - COTS or in-house tools should have the same key interface definitions (or functionally similar)
 - Use Meta-Languages where appropriate {XML, WSDL}
 - Goal is to allow for plug-and-play modules that can be integrated quickly
- Middleware
 - Provides message-based <u>communications services</u> on a GMSEC "software bus"
 - Publish / subscribe, point-to-point, file transfer
 - Makes it much easier to add new tools, reduce integration efforts
- User Choices
 - Not limiting tool selection to one that fits all
 - Want to give users a choice of T&C systems, flight dynamic systems, etc.
- GMSEC "Owns" the Architecture and Interfaces

Current Configuration

- Six SMEX satellites currently being operated
 - SWAS and TRACE; GSFC prime
 - SAMPEX and WIRE; Bowie State prime
 - FAST and RHESSI; Berkeley prime; GSFC future backup
 - GSFC and Bowie State are reciprocating backup facilities
- SMEX has integrated FDF and DPS into the MOC
- Mission operation systems are legacy GOTS components
 - Each mission requires multiple systems and interfaces for support
 - Each satellite has (see diagram on next slide):

■ITOS T&C System	Early Warning / Alarm System
Planning System	 Automation scripts
Flight Dynamics System	 Data Processing System

Current SMEX MOC Context Diagram

Single Mission System

Fleet Operations Configuration

Built upon GMSEC architectural and messaging standards

- Utilizing full capabilities of GMSEC messages, incl. Telemetry, Flight Dynamics products, Scheduling products
- Validating GMSEC messages in a Fleet environment
- Working with GMSEC to develop message standards for Fleet configurations

Fleet Configuration

- L3 InControl-NG Multi-Satellite T&C system
- L3 Multi-Satellite Archiving and Trending System
- Fleet capable planning system
- Fleet capable flight dynamics system
- Rule-based Automation (Criteria Action Table)
- Adopting new security policies (e.g. dynamic user authorization, system privilege logging)
- End Result System Consolidation

Fleet Operations Context Diagram

L3 InControl-NG COTS T&C

Multi-Spacecraft and Ground Operations Management:

- Multiple bus and ground support via database configurability
- Dynamic fleet view GUI's,
- Off the shelf fleet capability

Procedure Platform

- Control of ground assets integrated into satellite operations procedures
- Scheduling and trigger based activities to reduce workload
- Support for native (ITOS) STOL procedures

· Archive:

- Raw archives, processed value (including statistical)
- System activity log, Plotting

Commercial and Fleet Installations

- INMARSAT; 15 satellites, 1 operator per shift
- UK MOD SkyNet; future mission, 11 satellites
- Astrium (In-house test, Amazonas and Hispasat), Thaicom (iPSTAR), all future launch

Phase Objectives

- Implementing the SMEX Fleet Operations Center (FOC) in 4 phases,
 where each Phase successfully ends with a capability demonstration
- Phase 1 : March 2004 //
 - Live and Playback Telemetry for WIRE, SAMPEX, SWAS, TRACE
- Phase 2: June 2004
 - Commanding for WIRE, SAMPEX, SWAS, TRACE
 - Demonstrating Commanding via Simulator
 - L3 Solaris GMSEC Bus support for Telemetry
 - Archiving, Trending
- Phase 3 and 4: August / October 2004
 - Mission planning, command load generation, and automation
 - PI (EOF), FDF and other external interfaces
 - System Checkout and Parallel Operations
 - Telemetry and Commanding for FAST and RHESSI
- Full database and system validation prior to live operations

NASA Benefits

- SMEX Fleet Ops effort will serve as a proof of concept for GMSEC in operations
 - COTS / GOTS selection
 - Component interoperability and automation through messaging and communication standards
- Technology and Operations Concept demonstrations for multisatellite operations (Constellations and Formations)
 - MMS, MAXIM, Stellar Imager, LISA, etc.
- Technology and Operations Concept demonstrations for Lunar explorations
 - T&C of multiple systems: satellites, robotic explorers, bases
- Coordinates Interfaces between Space Sciences and Earth Sciences Directorates

Current Status

- Approval from Code 297 for GMSEC implementation
- InControl-NG (ICNG) T&C system processing concurrent fleet telemetry streams
 - Fleet consists of SWAS, TRACE, WIRE, SAMPEX
 - L3 ported mission databases and operator consoles
 - Alarms, Warning, Event (AWE) Displays
 - Out Of Limit (OOL) Displays
 - Alpha-Numeric Displays (AND)
 - Plotting Capabilities
 - Demo to Chuck Holmes/HQ
- Porting the command databases; adding COP-1 support in ICNG
- Defining a Fleet Flight Dynamics concept
- Evaluating L3's Trending and Planning Capabilities

Additional Investigations FY04

- Explore Operations Concepts for Fleets
 - Flight Dynamics
 - Fleet Mission Planning
 - PI Integration
 - Spacecraft / Ground Communication Interfaces
- Encourage Technology and Operations Concept demonstrations for university supported mission operations
 - Universities provide low cost operators while training the future workforce
 - NASA provides deep engineering experience for anomaly resolution, trending and analysis, etc.
- Foster Technology and Operations Concepts for secure remote operations
 - University students, Principal Investigators, remote operators/engineers
 - Develop procedures for dealing with tightening security measures

ITOS PAGES

INCONTROL NG PAGES

